Mark Scheme (Results)

Summer 2017

Pearson Edexcel International A Level in Statistics S3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code WST03_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme							Marks					
4. (a)	$\hat{\lambda}=\frac{0(3)+1(13)+2(14)+3(15)+4(10)+5(8)+6(8)+7(6)+8(3)}{80}\left\{=\frac{280}{80}\right\}=3.5$ *							B1cso *					
								[1]					
(b)	$\begin{aligned} & r=80 \quad \frac{\mathrm{e}^{3.5}(3.5)^{3}}{3!}\{=17.26283752 \ldots\} \text { or } r=80 \quad(0.5366 \quad 0.3208)\{=17.264\} \\ & s=80 \quad(2.42+8.46+14.80+\text { their } r+15.10+10.57+6.17+3.08)\{=2.14 \text { or } 2.13716 \ldots\} \\ & \text { or } s=80 \quad(1 \quad 0.9733)\{=2.136\} \end{aligned}$							M1					
	$r=17.26$ (2dp), s=2.14 (2dp)				At least one	either $r=\mathrm{a}$	26 or $s=$ awrt 2.14	A1					
						3oth awrt r	26 and awrt $s=2.14$	A1					
								[3]					
(c)	H_{0} : Poisson distribution is a suitable model. H_{1} : Poisson distribution is not a suitable model.							B1					
	$\begin{gathered} \# \\ \text { calls } \end{gathered}$	O_{i}	E_{i}	$\begin{gathered} \text { Comb } \\ O_{i} \\ \hline \end{gathered}$	$\begin{gathered} \text { Comb } \\ E_{i} \end{gathered}$	$\frac{\left(O_{i} E_{i}\right)^{2}}{E_{i}}$	$\frac{O_{i}{ }^{2}}{E_{i}}$						
	0	3	2.42	16	10.88	2.4094...	23.5294...	M1					
	1	13	8.46										
	2	14	14.80	14	14.80	0.0432...	13.2432...	M1					
	3	15	17.26	15	17.26	0.2959...	13.0359...						
	4	10	15.10	10	15.10	1.7225...	6.6225...						
	5	8	10.57	8	10.57	0.6249...	6.0549...						
	6	8	6.17	8	6.17	0.5428...	10.3728...						
	7	6	3.08	9	5.22	2.7372...	15.5172...						
	$\geqslant 8$	3	2.14										
					Totals	8.3759...	88.3759...						
	$\mathrm{X}^{2}=\frac{(O E)^{2}}{E}$ or $\quad \frac{O^{2}}{E} \quad 80 ;=$ awrt 8.38						rt $\underline{8.38}$ or awrt $\underline{8.39}$	A1					
	$=7 \quad 1 \quad 1=5$							B1ft					
	$\chi_{5}^{2}(0.05)=11.070 \Rightarrow \mathrm{CR}: \mathrm{X}^{2} \geqslant 11.070$							B1ft					
	[not in the CR/not significant/Do not reject H_{0}]												
	Poisson distribution is a suitable model. (oe)							A1					
								[7]					
								11					
	Notes												
(c)	$\begin{gathered} \mathrm{B}_{\mathrm{Bcso}}{ }^{\text {st }} \\ 1^{1} 1 \\ \mathrm{~s}^{\text {st }} \mathrm{M} 1 \\ 2^{\text {nd }} \mathrm{M} 1 \\ 1^{\text {st }} \mathrm{A} 1 \\ 2^{\text {nd }} \mathrm{B} 1 \mathrm{ft} \\ 3^{\text {rd }} \mathrm{B} 1 \mathrm{ft} \\ 2^{\text {nd }} \mathrm{A} 1 \\ \text { Note } \\ \text { Note } \\ \text { Note } \end{gathered}$	At least 2 non-zero products shown and divide by 80 to achieve 3.5* Must have both hypotheses and mention Poisson at least once. Inclusion of 3.5 for in is $1^{\text {st }} \mathrm{B} 0$ For a correct method of pooling the classes at both ends [ft their s value] For an attempt at the test statistic, at least 3 correct expressions/values (to awrt/truncated 2 d.p.) awrt 8.38 or awrt 8.39 (This implies the both M1 marks) For their evaluated $n \quad 1 \quad 1$. i.e. realising that they must subtract 2 from their n. Correct ft for their $\chi_{k}^{2}(0.05)$, where $k=n 11$ from their n. (May see $9.488,12.592,14.067$) Dep. on at least 1 M1 mark for a correct conclusion which is accepting H_{0}. No follow through on their hypotheses if they are stated the wrong way round. Contradictory statements score A0. E.g. "significant, do not reject H_{0} " Condone the mention of $\operatorname{Po}(3.5)$ in conclusion.											

Question Number	Scheme			Marks
6. (a)	$\bar{x}=230.5 ; 95 \%$ confidence limits for are			
	$230.5 \pm 1.96 \frac{1.2}{\sqrt{5}}$		their $\bar{x} \pm z \frac{1.2}{\sqrt{5}}$	M1
			$z=1.96$	B1
	$=(229.44815 \ldots, 231.55185 \ldots)=\operatorname{awrt}(229.4,231.6)$		At least one end-point is correct.	A1
			Both end-points are correct.	A1
				[4]
(b)	\{ Let $X=$ number of confidence intervals that don't contain \}			
	$\{$ So $X \sim\} \mathrm{B}(20,0.05)$			M1
	$\{\mathrm{P}(X>3)\}=1-\mathrm{P}(X \leqslant 3)$ or 1-0.9841			A1
	$=0.0159$		awrt 0.0159	A1
				[3]
				7
	Notes			
(b)	M1 Writing or using either $X \sim \mathrm{~B}(20,0.05)$ or $Y \sim \mathrm{~B}(20,0.95)$ $\mathbf{1}^{\text {st }} \mathbf{A 1}$ $1-\mathrm{P}(X \leqslant 3)$ or $1-0.9841$ or $\mathrm{P}(Y \leqslant 16)$. Can be implied by the final answer. $\mathbf{2}^{\text {nd }} \mathbf{A 1}$ awrt 0.0159			

Question Number		Scheme	Marks
8.	X follows a continuous unform distribution over $\left[\begin{array}{l}\text { a } \\ \text {, }\end{array}+9\right] ; Y=\frac{2 \bar{X}}{3}+k$		
(a)	$\{\mathrm{E}(\bar{X})=\}=\frac{2+9++3}{2}$		M1
		$=\frac{3}{2}+6$ or $\frac{3+12}{2} . \quad\{$ So \bar{X} is a biased estimator. $\}$	A1
			[2]
(b)	bias $\left\{=\frac{3}{2}+6 \quad\right\}=\frac{1}{2}+6$ or $\frac{+12}{2}($ allow \pm)		B1ft
			[1]
(c)	$\left\{\mathrm{E}(Y)=\frac{2}{3} \mathrm{E}(\bar{X})+k=\Rightarrow\right\} \frac{2}{3}\left(\frac{3}{2}+6\right)+k=$		M1
	$\{+4$	$k=\quad\} k=4 \quad k=4$	A1
			[2]
(d)	$\left\{\hat{}(\underline{2} \overline{3} \quad 4 \Rightarrow\}^{\wedge}=\frac{2}{3}(7.8) \quad 4\{=1.2\}\right.$		M1
	Max value $=2(1.2)+9$		M1
		$=11.4 \times 11.4$ or $11 \frac{2}{5}$ or $\frac{57}{5}$	A1
			[3]
			8
(a)	Notes		
	M1 A1	Using the formula $\left(\frac{b+a}{2}\right)$ or obtaining $\frac{3+12}{2}$ or $\frac{3}{2}+6$	
(b)	B1ft	bias $= \pm\left(\frac{1}{2}+6\right)$ or $\pm\left(\frac{+12}{2}\right)$ or ft their μ provided $\mu \neq \alpha$	
(c)	M1	Sets $\frac{2}{3}($ their $\mathrm{E}(\bar{X}))+k=$. This mark can be implied. $k=4$. Note that $k=4$ with no working is M1 (implied) A1.	
(d)	$1^{\text {st }}$ M1	An attempt to use the sample data given to find $\frac{2}{3} \bar{x}+$ "their k ". Allow full expression for \bar{x} or $\frac{\sum x}{n}$. (Note that from the data $\bar{x}=7.8$)	
	$2^{\text {nd }} \mathrm{M} 1$	2 "their " +9 where their is a function of the sample mean - which has been found by applying $\frac{\sum x}{n}$ from the data values given in the question.	
	A1	11.4 cao	
	Note	$2(10.6)+9=30.2$ is M0M0A0	

